In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity.

نویسندگان

  • Craig S Brown
  • Michael S Lee
  • Daisy W Leung
  • Tianjiao Wang
  • Wei Xu
  • Priya Luthra
  • Manu Anantpadma
  • Reed S Shabman
  • Lisa M Melito
  • Karen S MacMillan
  • Dominika M Borek
  • Zbyszek Otwinowski
  • Parameshwaran Ramanan
  • Alisha J Stubbs
  • Dayna S Peterson
  • Jennifer M Binning
  • Marco Tonelli
  • Mark A Olson
  • Robert A Davey
  • Joseph M Ready
  • Christopher F Basler
  • Gaya K Amarasinghe
چکیده

The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor

It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlE...

متن کامل

Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription.

The nucleocapsid protein VP35 of Marburgvirus, a filovirus, acts as the cofactor of the viral polymerase and plays an essential role in transcription and replication of the viral RNA. VP35 forms complexes with the genome encapsidating protein NP and with the RNA-dependent RNA polymerase L. In addition, a trimeric complex had been detected in which VP35 bridges L and the nucleoprotein NP. It has...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing

Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I ...

متن کامل

Effects of Filovirus Interferon Antagonists on Responses of Human Monocyte-Derived Dendritic Cells to RNA Virus Infection.

UNLABELLED Dendritic cells (DCs) are major targets of filovirus infection in vivo Previous studies have shown that the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) suppress DC maturation in vitro Both viruses also encode innate immune evasion functions. The EBOV VP35 (eVP35) and the MARV VP35 (mVP35) proteins each can block RIG-I-like receptor signaling and alpha/beta interferon (IFN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 426 10  شماره 

صفحات  -

تاریخ انتشار 2014